
>: FAQs//

Content Processing Development Kit

FAQ CP-DK v1.0 Page 1 of 7

Fig 2. ANSI-C/ Handel-C comparison

Q1. What is the Content Processing
Development Kit (CP-DK)?

Q2. What does the Content Processing
Development Kit (CP-DK) include?

Q3. What is the Content Processing Platform
(CPP)?

Q4. How does a CPP help me to accelerate my
software applications?

Q5. How can I design (HW) acceleration IP?

Q6. Why should I consider using CP-DK?

Q7. How does Celoxica’s DK design suite help
me to develop content for the CPP platform?

Q8. What specific features are available in
CP-DK to develop optimized designs?

Q9. Why should I consider Handel-C for
hardware development?

Q10. What is the relationship between ANSI-
C and Handel-C?

Q11. What are the key benefits of making
direct calls between Handel-C and C/C++?

Q12. Given that C is a sequential language,
how does Handel-C address hardware specific
issues e.g. implementation of parallelism?

Q13. What is your recommended
development flow for Windows OS server
based application acceleration? Linux based
servers and clusters?

Q14. How do I evaluate the tradeoffs of
executing my algorithm on the CPU versus
the CPP?

Q15. What are the minimum development
system requirements for developing (HW)
acceleration IP using CP-DK?

Q16. Does Celoxica have design examples and
tutorials for the CPP and how do I obtain
them?

Q17. What are the other Content Processing
building blocks from Tarari?

Q18. What are the other Content Processing
acceleration products from Tarari?

Q19. What are the main differences between
this approach and the industry’s standard
approach to address content processing
platforms?

Q20. What are the main advantages of an
FPGA-based platform versus an ASIC one?

Q21. Where can I get more information about
CP-DK and the Content Processor Platform?

Q22. How can I schedule a presentation on
CP-DK?

Q23. How can I purchase CP-DK?

Q24. What else do I need to purchase to
develop Content Processors?

Q25. How can I get support for CP-DK?

Minimal Tool Chain

Similar Languages

Standardised API’s

Platform Abstraction

External IP (optional)

HW

CompileEDIF OBJ

SW

Specification

Handel-C C

DK

BSP

OS

SW Tool

BSP

LIBS

HW SW

Implementation

EDIF

HDL

LIB

C

CPP Host CPU

Minimal Tool ChainMinimal Tool Chain

Similar LanguagesSimilar Languages

Standardised API’sStandardised API’s

Platform AbstractionPlatform Abstraction

External IP (optional)External IP (optional)

HW

CompileEDIF OBJ

SW

Specification

Handel-C C

DK

BSP

OS

SW Tool

BSP

LIBS

HW SWHW SW

Implementation

EDIF

HDL

LIB

C

CPP Host CPU

Fig 1. Development Flow

>: FAQs//

Content Processing Development Kit

FAQ CP-DK v1.0 Page 2 of 7

Q1. What is the Content Processing
Development Kit (CP-DK)?

A1. CP-DK is a combination of the hardware and
software content processing building blocks that
creates a flexible, dynamically reconfigurable
hardware platform designed to accelerate a variety
of compute-intensive algorithms. CP-DK also
includes development tools, sample code and
design and usage guides that enables developers
to quickly ramp their learning curve.

Q2. What does the Content
Processing Development Kit (CP-DK)
include?

A2. CP-DK includes the hardware to create a
Content Processor, namely a Content Processing
Platform (CPP), currently a ½ length PCI card. It
also includes the software components, drivers
libraries, development aids and documentation
required by designers to develop Content
Processors that snap into servers, appliances and
network devices.

Q3. What is the Content Processing
Platform (CPP)?

A3. A PCI card incorporating reconfigurable logic
that can target specific compute-intensive tasks
and decrease the processing time required to
perform specific operations.

The CPP (Figure 3) consists of

• Two CPE’s – Content Processing Engines,
each is a Virtex-II 1000 FPGA with
connections to:

o Eight LEDs
o 2x 1MB SRAM
o CPC

• CPC – Content Processing Controller, with
connections to:

o 256MB DDR SDRAM
o PCI Bus to Host

Q4. How does a CPP help me to
accelerate my software
applications?

A4. There are two key opportunities with a
hardware co-processor:

• Algorithm Acceleration: Exploit the
parallelism in algorithms to increase
performance with implementation in
custom (parallel) hardware i.e. FPGA’s.

• Algorithm Offload: Exploit the
coprocessor to free CPU resource

For PCI-based coprocessor cards candidate
algorithms include ones where CPU execution time
is comparable to or far exceeds data transfer time
over PCI.

A full analysis needs to consider:

• Time required to perform the algorithm in
the co-processor.

• System application performance
improvement – Amdahl’s Law.

Q5. How can I design (HW)
acceleration IP?

A5. There are two approaches. We recommend
and use the second.

• Traditional Options – HDL based design
o Purchase FPGA (HW)

development tools
o Hire/use HW engineers
o Pay 3rd Party development fees

• The Alternative – “Software Compiled
System Design”

o Use Celoxica Content
Processing Development Kit

o Development framework with
Example Acceleration IP

o Comprehensive Hardware-
Software Co-simulation
environment

o Tool and Language Connectivity
o Enable SW engineers and/or

increase HW engineer
productivity

Further benefits of CP-DK are outlined below.

Q6 Why should I consider using CP-
DK?

A6. The development flow (Figure 1) using CP-DK
provides:

• A minimal tool chain: Celoxica DK
design suite, C/C++ compiler and Xilinx
Place and Route tools.

• A common language base: – mixed
language descriptions, C and Handel-C.

• API’s for common interfacing and
platform abstraction: Simplifying
application development

CP-DK:

• Reduces the time taken to design
acceleration IP

>: FAQs//

Content Processing Development Kit

FAQ CP-DK v1.0 Page 3 of 7

o Reduces cost, time to market
and risk

o SW-HW Partition exploration
using system models for better
designs faster

• Widens access to the design of
acceleration IP

o Closer cooperation between the
hardware and software designers

o Better utilisation of existing
resources

• Full integration with other tools
o C/C++, RTL, ISS, Block Model

Simulators (MatLab)
o Automation of FPGA

configuration tools Enables
complete system design using
the most appropriate technology

Q7. How does Celoxica’s DK design
suite help me to develop content for
the CPP platform?

A7. DK (Figure 6) is Celoxica’s integrated design
environment (IDE) allows the user to take C
language level code (Handel-C) directly to
hardware.

DK provides a software development-like
environment that enables designers to work with a
common methodology in both hardware and
software implementation. It provides facilities to:

• Manage and edit multiple source files.
• Simulate and debug complex designs.
• Co-simulate with C and C++ language

source code.
• Co-simulate with HDL implementations

and other development environments
• Integrate and build hardware.

Q8. What Specific features are
available in CP-DK to develop
optimised designs?

A8. The similar HW/SW language and methodology
(Figure 1) simplify the exploration of system
partitions and allocation of functionality between
hardware and software for optimum performance.
Designing applications to a well-defined API allows
for fast simulations (Figure 4) and many design
iterations to be tested against performance
requirements.

Logic area and timing estimation output is
presented in an HTML format report. Each line of
code has an associated report of the number of
LUTs, flip-flops, memory bits and other additional
logic elements.

Information on the longest path in a design is also
presented to aid the designer in accurate analysis
of critical path timing and circuit behavior.

This allows the designer to experiment with
different optimization strategies within the DK
environment until their design goals are met,
before placement of the design.

Q9. Why should I consider Handel-C
for hardware development?

A9. CPP based systems combine both hardware &
software. Consequently, they emphasize the need
to manage software as well as hardware
components through effective co-design. When
coupled with increasingly complex algorithmic
designs this means that the decision to move to a
language with a higher level of abstraction is a
logical one. This is the hardware design analogue
of using C and a C-language compiler as opposed
to programming a software system in assembler.

For an efficient and timely co-design solution it is
advantageous to use a common language base for
both the modeling and implementation of the
overall system. This will facilitate its effective
planning, partitioning and implementation and with
similar design methods improves the optimal
allocation of functionality to both the hardware and

CPC

PCI bus

256MB DDR
SDRAM

CPE

CPE

1MB SRAM

1MB SRAM

1MB SRAM

1MB SRAM

L
E
D

L
E
D

Fig 3. Basic CPP Architecture.

HW SW

Specification

DK

Handel-C C

Nexus
HW SW

Implementation

Virtual Platform

BSPBSP

HDL-Simulator SW and/or ISS

HW SW

Specification

DK

Handel-C C

Nexus
HW SWHW SW

Implementation

Virtual Platform

BSPBSP

HDL-Simulator SW and/or ISS

Fig 4. API’s enable rapid co-verification.

>: FAQs//

Content Processing Development Kit

FAQ CP-DK v1.0 Page 4 of 7

software resources.

Handel-C represents the next logical step in the
evolution of hardware design, just as HDLs were a
step above Schematic Capture. Handel-C enables
design at the functional, rather than the structural
level, making it suitable for prototyping and
implementing algorithms in hardware, hardware/
software co-design and design space exploration.

Q10. What is the relationship
between ANSI-C and Handel-C?

A10. Based on the structure, syntax and language
elements of ANSI-C, Handel-C has extensions
required for hardware development (Figures 2 and
5). These include:

• Parallel processing.
• Flexible data widths.
• Multiple clock domains.
• Communications between parallel

elements.
• A simple timing model.

Q11. What are the key benefits of
making direct calls between
Handel-C and C/C++?

A11. This capability enables designers to:

• Create system models in C/C++.
• High level verification of the functionality

and characteristics of a system.
• Select individual modules for hardware

implementation in Handel-C.
• Make more informed partitioning

decisions and to make optimum use of
the processor plus hardware
(acceleration card) resources.

• Simulate Handel-C hardware modules
within the overall system, acting as a
‘test bench’ to verify Handel-C
functionality.

Q12. Given that C is a sequential
language how does Handel-C
address hardware specific issues
e.g. implementation of parallelism?

A12. A language construct, the ‘par’ statement
has been implemented in Handel-C to allow the
designer to specify code that should execute in
parallel (by building parallel blocks of logic)
thereby giving control over the performance (and
size) of the design.

In addition Handel-C uses a powerful, yet simple,
timing model where each assignment in the

program takes one clock cycle to execute, with
specific types for sub-clock cycle operations,
giving the designer full control over what is
happening in the design at any point in time.

E.g. these three assignments execute in parallel
and in the same clock cycle:

par
{

x = 1;
y = 2;
z = 3;}

define WIDTH 9 // parameterisable data widths

typedef struct // complex number type
{

signed WIDTH re;
signed WIDTH im;

}
complex;

set clock = external " ClockSource ";
void main() // single synchronous clock domain (ClockSource)
{

chan complex cDataIn[2], cDataOut; // communication channels

while(1)
par // parallel hardware
{

DataIO(cDataIn, &cDataOut); // data input/output function
Transform(cDataIn, &cDataOut); // data transform function

}
}

void Transform(chan complex *pcDataIn, chan <complex> *pcDataOut)
{

complex DataInReg[2],DataOutReg; // complex data registers

par (i=0; i<2; i++) // replicted par{}
{

pcDataIn[i] ? DataInReg[i]; // read complex numbers in parallel
}
par
{ // single cycle multiplication of two complex numbers

DataOutReg.re = DataInReg[0].re*DataInReg[1].re - DataInReg[0].im*DataInReg[1].im;
DataOutReg.im = DataInReg[0].re*DataInReg[1].im + DataInReg[0].im*DataInReg[1].re;

}
*pcDataOut ! DataOutReg; // write complex number

}

void DataIO(chan complex *pcDataIn, chan <complex> *pcDataOut)
{

complex DataInReg[2],DataOutReg; // complex data registers

DataInput(&DataInReg[0]); // data input function
DataInput(&DataInReg[1]); // data input function
par (i=0; i<2; i++) // replicted par{}
{

pcDataIn[i] ! DataInReg[i]; // write complex numbers in parallel
}
*pcDataOut ? DataOutReg; // read complex result
DataOutput(&DataOutReg); // data output function

}

#ifdef SIMULATE // Simulation Testbenches

void DataInput(complex *pDataIn)
{

long Data[2];
scanf("%d%d", &Data[0], &Data[1]); // ANSI-C function
pDataIn->re = adjs(Data[0], WIDTH); // type conversion from ANSI-C call
pDataIn->im = adjs(Data[1], WIDTH); // type conversion from ANSI-C call

}

void DataOutput(complex *pDataOut)
{

long Data[2];
Data[0] = adjs(pDataOut->re, 32); // type conversion for ANSI-C call
Data[1] = adjs(pDataOut->im, 32); // type conversion for ANSI-C call
printf("DataOut: %d %d\n", Data[0], Data[1]); // ANSI-C function

}

#else // Hardware Implementations

void DataInput(complex *pDataIn)
{

interface port_in(signed WIDTH in) DataInPort(); // WIDTH-bit input port
pDataIn->re = DataInPort.in;
pDataIn->im = DataInPort.in;

}

void DataOutput(complex *pDataOut)
{

signed WIDTH Data;
interface port_out() DataOutPort(signed WIDTH OutPort = Data); // WIDTH-bit output port
Data = pDataOut->re;
Data = pDataOut->im;

}
#endif

Fig 5. Handel-C code for single cycle multiplication of two complex
numbers. For illustration the code deliberately uses Handel-C
concepts and extensions such as, par, chan, synchronization,
functions, pointers, structures, interfacing and externing pure C
functions for simulation.

>: FAQs//

Content Processing Development Kit

FAQ CP-DK v1.0 Page 5 of 7

The designer can also manage the creation and
use of functions within the code, allowing size and
performance to be balanced.

Q13. What is your recommended
development flow for Windows OS
server based application
acceleration? Linux based servers
and clusters?

A13. The development flow is illustrated in Figures
1 and 4. Development of the HW acceleration IP
requires a Windows PC. We suggest:

1. Profile your software application on the
target platform (Windows/Linux server)
and identify candidate algorithms for
implementation on the CPP.

2. Port the core of your application to a
Windows PC and create a system model in
C/C++.

3. Port or re-implement the candidate
portions of the model in Handel-C using
the facilities in DK, such as connecting to

external C/C++ code, to use the system
model as a testbench.

4. Use DK to create a configuration file for
the FPGA on the CPP.

5. Port software components back to the
target system and test.

Q14. How do I evaluate the
tradeoffs of executing my algorithm
on the CPU versus the CPP?

A14. Use software profiling to characterize the
performance of your application. Using CP-DK you
can develop a mixed C/C++/Handel-C system
model. DK gives size and speed metrics for the
Handel-C portions of the design.

Q15. What are the minimum
development system requirements
for developing (HW) acceleration IP
using CP-DK?

A15. Development of FPGA configuration files
requires a windows PC for development. Minimum
system requirements for DK are given in the DK

File view

Symbol view

Syntax highlighting

Break-points

Multithreaded
Debug

Watch
variables

Simulate Build

Clock Cycles

Info

File view

Symbol view

Syntax highlighting

Break-points

Multithreaded
Debug

Watch
variables

Simulate Build

Clock Cycles

Info

Fig 6. The DK IDE illustrating parallel symbolic debug.

>: FAQs//

Content Processing Development Kit

FAQ CP-DK v1.0 Page 6 of 7

FAQ. Currently only Linux drivers have been
released for software development and deployment
of CPP platforms. Compatible platforms are given
in the Tarari CP-DK fact sheet and product
overview.

Q16. Does Celoxica have design
examples and tutorials for the CPP
and how do I obtain them?

A16. Yes, design examples, application notes and
presentations are available from your local FAE or
Account Manager or via the support pages at
www.celoxica.com.

Q17. What are the other Content
Processing building blocks from
Tarari?

A17. Tremendous investment has been made to
accelerate and process packets as they move
through networks and servers. However, this
packet processing has been limited to looking at
headers, doing table-look up’s, and sending the
packets on their way. Tarari Content Processors
are hardware based subsystem building blocks
(silicon, boards, etc.) that snap into servers,
appliances and network devices to allow control
and inspection of complete messages and rich data
at much greater rates than previously possible.
Tarari Content Processors ensure that the
information in the payloads of these messages can
be intelligently accessed and processed while
maintaining network speeds.

Q18. What are the other Content
Processing acceleration products
from Tarari?

A18. CP-DK includes the first of Tarari’s Formula-
CP Acceleration series of products. Additional
acceleration products will be provided in early ’03
focused on two main areas: Network Security and
XML Web Services.

Q19. What are the main differences
between this approach and the
industry’s standard approach to
address content processing
platforms?

A19. The focus here is on accelerated processing
at the application layer, providing the ability to
intelligently analyze the entire payload of the
message. The majority of the industry is focused

on accelerating network processing at the packet
level, looking at only part of the message.

Q20. What are the main advantages
of an FPGA-based platform versus
an ASIC one?

A20. These include providing the performance and
flexibility that leads to a lower cost of ownership.
Flexibility is the key that allows Content Processors
to adapt as the environment and/or usage pattern
changes. The end result is an improved solution
that costs less over the lifetime use. In addition,
using the Celoxica design methodology can
significantly reduce the development times to get a
solution up and running enabling faster time-to-
market

Q21. Where can I get more
information about CP-DK and the
Content Processor Platform?

A21. For more information on CP-DK, Celoxica or
Tarari visit:
www.Celoxica.com/partner/reconfig_apps_default.
asp, www.celoxica.com, www.tarari.com or contact
your local Celoxica office. You can also email
sales@celoxica.com.

Q22. How can I schedule a
presentation on CP-DK?

A22. To schedule a presentation you can call
Celoxica or Tarari – see contact information at
www.celoxica.com and www.tarari.com or send an
email to sales@celoxica.com.

Q23. How can I purchase CP-DK?

A23. To purchase CP-DK contact Celoxica directly.

Q24. What else do I need to
purchase to develop Content
Processors?

A24. To develop Content Processors with the CP-
DK libraries and hardware you will also need to
purchase the Celoxica DK Design Suite and Xilinx
Place and Route Tools. These can be arranged
directly with Celoxica.

Q25. How can I get support for CP-
DK?

A25. Celoxica is providing support for CP-DK. Send
a email to support@celoxica.com or call on the

http://www.celoxica.com/
http://www.celoxica.com/partner/reconfig_apps_default.asp
http://www.celoxica.com/partner/reconfig_apps_default.asp
http://www.celoxica.com/
http://www.tarari.com/
http://www.celoxica.com/
http://www.tarari.com/
mailto:sales@celoxica.com
mailto:support@celoxica.com

>: FAQs//

Content Processing Development Kit

FAQ CP-DK v1.0 Page 7 of 7

appropriate telephone number for your region. See
www.celoxica.com/support/default.asp.

Customer Support at Support@celoxica.com and +44 (0)1344 663649.

Celoxica Ltd.
20 Park Gate
Milton Park
Abingdon
Oxfordshire OX14 4SH
United Kingdom
Tel: +44 (0) 1235 863 656
Fax: +44 (0) 1235 863 648

Celoxica, Inc
900 East Hamilton Avenue
Campbell, CA 95008
USA
Tel: +1 800 570 7004
Tel: +1 408 626 9070
Fax: +1 408 626 9079

Celoxica Japan KK
YBP West Tower 11F
134 Godo-cho, Hodogaya-ku
Yokohama 240-0005
Japan
Tel: +81 (0) 45 331 0218
Fax: +81 (0) 45 331 0433

Celoxica Pte Ltd
Unit #05-03
31 Int’l Business Park
Singapore
609921
Tel: (65) 6896 4838
Fax: (65) 6566 9213

Copyright © 2001 Celoxica Ltd. All rights reserved. Celoxica and the Celoxica logo are trademarks of Celoxica Ltd.

www.celoxica.com

mailto:Support@celoxica.com
http://www.celoxica.com/
http://www.celoxica.com/support/default.asp

